On the singularities of 3 — D Protter’s problem
for the wave equation
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ABSTRACT. In this paper we investigate some boundary value problems for the
wave equation, which are three-dimensional analogues of Darboux-problems
(or Cauchy-Goursat problems) on the plane. These problems have been for-
mulated and studied by M. Protter (1954) in a 3 — D domain {lo, bounded
by two characteristic cones and a plane region. Many authors studied these
problems using different methods, like: ‘Wiener-Hopf method, special Legendre
functions, a priori estimates, nonlocal regularization and others. It is shown
that for any n € N there exists a C™({p) - function, for which the correspond-
ing unique generalized solution belongs to C"(p\0), but it has a strong
power-type singularity at the point O. This singularity is isolated only at the
vertex O of the characteristic cone and does not propagate along the cone. In
this paper we investigate the exact behavior of the singular solutions at the
point O. Also, we study more general boundary value problems and find that
there exist infinite number of smooth right-hand side functions for which the
corresponding unique generalized solutions are singular. Finally, some weight
a priori estimates are stated.

1. Imtroduction _

Consider the wave equation
1 1
{13 Ou= Azu—us = E(g'u.g)e + ?”w —uy =17

in polar or Cartesian coordinates £; = gcos @, Tz = psin,t in a simply connected
region 2y C R3. The region

Qo := {(z1,22,) : 0 < t <1/2,8 < /73 +z3 <1-1}
is bounded by the disk
EO — {(a:l,zg,t) o =0,:L‘% +$g < 1}
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and the characteristic surfaces of (1.1):

B := {(z1,z2,8) : 0 <t < 1/2, «,/:1:51 -I—:x:zE =1-t},
o0 = {(z1,Z2,2) : 0 <t <1/2, VT +x3 =t}

In this work we seek sufficient conditions for the existence and uniqueness of a
generalized solution of

Problem P,. Find a solution of the wave equation (1.1) in £, which satisfies
the boundary conditions

(1.2) P.: g, =0, [u+oullz, =0,
where a € C(Zo).

The adjoint problem to P, is
Problem P, Find a solution of the wave equation (1.1) in Qp with the bound-
ary conditions:

.

(1'3) o u!Ez,o =0, [uf + m“uzn =0

The following problems, due to Protter [22], are known as
Protter’s Problems. Find a solution of the wave equation (1.1) in {2 with
the boundary conditions

Pl ‘uigouzl =0, P1*: ul‘u"ouzz,o =0 ;

(14) P2: ulg, =0,u|z, =0, P2 : |z, =0,u|5, =0.

The boundary conditions in problem P1* (respectively of P2*) are the adjoint
boundary conditions to such ones of P1 (respectively P2) for the equation (1.1) in
Q. Protter [22] formulated and investigated problems P1 and P1” in g as multi-
dimensional analogues of the Darboux problem on the plane. It is well known
that the corresponding Darboux problems in R? are well posed, but this is not
true for the Protter’s problems in R®. For recent known results concerning the
problems (1.4) see papers of Popivanov, Schneider [20], [21] and references therein.
For further publications in this area see: [2], [3], [7], [11], [14], [15], [18]. In [1],
using Wiener-Hopf techniques for the case a(p) = c/p,c # 0, Aldashev studied the
Problems P, and P:. For Problem P, which we study in this paper, in [1] he
claimed uniqueness of the solution of the class C*(§20) N C?(€p), but he did not
mention any possible singular solutions.

On the other hand, Bazarbekov [5] gives another analogue of the classical Dar-
boux problem in the same domain Q9. Some different statements of Darboux type
problems can be found in [4], [6], [13], [16] in bounded or unbounded domains
different from .

Next, we present here the following well known (see [24], [19])

THEOREM 1.1. For alln € N,n > 4;an,by, arbitrary constants, the functions
(1.5) va(0, 0,t) = to~ "0 — tz]“'% (@, cos i + by, sin ny)
are classical solutions of the homogeneous problem P1* and the functions
(16) wn(0,0,1) = g "[0° — t*]" 7% (an cosnp + by sin )

are classical solutions of the homogeneous problem P2*.
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This theorem shows that for the classical solvability of the problem Pl (re-
spectively, P2) the function f at least must be orthogonal to all functions (1.5)
(respectively,(1.6)). Using Theorem 1.1, Popivanov, Schneider [21] proved the ex-
istence of some generalized solutions of Problems P1 and P2, which have at least
power-type singularities at the vertex (0,0,0) of the cone X,0. For the homogeneous
Problem P,* (except the case & =0, i.e. except Problem P2*) we do not know so-
lutions analogous to (1.5) and (1.6). Anyway, in the present paper we prove results
(see, Theorems 6.1 and 6.2), which ensure the existence of many singular solutions.
Here we refer also to Khe Kan Cher [15], who gives some nontrivial solutions found
for the homogeneous Problems P1* and P27, but for the Euler-Poisson-Darboux
equation, which are closely connected with the results of Theorem 1.1.

In order to obtain our results, we give the following definition of a solution of
Problem P, with a possible singularity at (0,0,0).

DEFINITION 1.1. A function u = u(x) z2,t) is called a generalized solution of
the problem

E;: Ou = f, ul i 0, [ut +a($)u]|zn = 0,

in Qo, if: -
1) we CH% \ (0,0,0)), [us+ 0’("“"')“”20\{0,0,0) =0, “Izl =0,

2) the identity

{1.7) ] [wgvs — Uy Vg — Ugy Vs — Sf]dT1dT2dE = f a(z)(wv)(z, 0)dx;dzy
Qo o
holds for all v € Vp :=
{ve C ) : [ve + a(a:)u”zo =0, v=0 in a neighbourhood of X¥20}.

In order to deal successfully with the encountered difficulties, as are the singu-
larities on the cone X3 g, we introduce the region

Q=0 n{p—t>eleecl0l),
which in polar coordinates becomes
(1.8) Q. ={(o;0:1):1>0,0<p<2m e+t <p<l—t}

and we define the notion of a generalized solution of Problem P, in Q€ € (0,1) (see
Definition 2.1). Note that, if a generalized solution u belongs to C (2. )NC3(82.),
it is called a classical solution of Problem P, in Q., £ € (0,1), and it satisfies the
wave equation (1.1) in Q.. It should be pointed out that the case e = 0 is totally
different from the case £ # 0.

This paper, besides Introduction, consists of five more sections. In Section 2,
using some appropriate technics, we formulate the 2 — D boundary problems F, ;
and P, 2, corresponding to the 3 — D Problem P,. The aim of Section 3 is to
treat Problem P, . For this reason, we construct and study the integral equation
assigned to the under consideration wave equation of general form. Also we present
results concerning the classical solutions of Problem Fq,2 in Qc,& € (0,1) and give
corresponding a priori estimates. In Section 4 we prove Theorems 4.1 and 4.2
which ensure the existence and uniqueness of a generalized solution of Problem
P, in Qe € [0,1). Using the results of the previous section, in Section 5 we



4 M.K. GRAMMATIXKOPOULOS, T.D. HRISTOV, AND N.I. POPIVANOV

study the existence and uniqueness of a generalized solution of 3 — D Problem
P,,. More precisely, Theorem 5.1 ensure the uniqueness of a generalized solution
of problem P, in Q,& € [0,1), while Theorems 5.2 and 5.3 ensure the existence
of a generalized solution, satisfying corresponding a priori estimates for problem
P, in the case, where the right-hand side of the wave equation is a trigonometric
polynomial or trigonometric series. Finally, in Section 6 we present some singular
generalized solutions which are smooth enough away from the point (0,0, 0), while
at the point (0,0, 0) they have power-type singularity of the class p~". Precisely, in
Theorem 6.1 we prove the following result: ’

Let o > 0 and o € C*®. Then for each n € N, n > 4, there ezists a function
Fn(o,0,t) € C™%(), for which the corresponding general solution un of the
problem P, belongs to C™(S0\(0,0,0)) and satisfies the estimate

(1.9) lun(py@,p)| = p | cosng|,  0<p<l

When o = 0 the upper estimate holds, and in this case we have also the following
two-sided estimate

(1.10) p " cosne| < [un(py P, lun(py 0, 0)] < Cop™"| cosmyl,

with Cy = const. That is, in the case of Problem P2 the ezact behavior of un(z1,Z2,1)
around (0,0,0) is (z3 + z3)~™/%.

REMARK 1.1. In Theorem 6.2 we find some different singular solutions for the
same problem P,. It is particularly interesting that for any parameter a(z) = 0,
involved in the boundary condition (1.2) on Lo, there are infinitely many singular
solutions of the wave equation. Note, that all these solutions have strong singu-
larities at the vertez (0,0,0) of the cone Tao. These singularities of generalized
solutions do not propagate in the direction of the bicharacteristics on the character-
istic cone. It is traditionally assumed that the wave equation with Tight-hand side
sufficiently smooth in Qo cannot have a solution with an isolated singular point.
For results concerning the propagation of singularities for second order operators,
see Hérmander [10], Chapter 2{.5. For some related results in the case of plane
Darbouz-Problem, see [17]. --

REMARK 1.2. In 1960 Garabedian proved [8] the unigueness of classical solu-
tion of Problem Pl. Ezistence and uniqueness results for a generalized solution of
Problems P1 and P2 can be found in [20], (21].

REMARK 1.3. Considering Problems Pl and P2, Popivanov, Schneider [19]
announced the ezistence of singular solutions of both wave and degenerate hyperbolic
equation. The proofs of that results are given in [21] and [20] respectively. First a
priori estimaies for singular solutions of Protter’s Problems P1 and P2, CONCETTING
the wave equation in R3, were obtained in [21]. In [2] Aldashev mentions the results
of [19] and, for the case of the wave equation in R™11 he shows that there exist
solutions of Problem Pl (respectively, P2 ) in the domain Q¢, which grow up on
the cones X . like g~ {n+m=2) (respectively, g=(ntm=1)) when for e — 0 the cones
T2 := {p =1 +¢€} appromimate L0 It is obvious that for m = 2 this results can
be compared with the estimate (1.10) of Theorem 6.1 and the analogous estimate of
Theorem 6.2. More comments, concerning Aldashev’s results [2], we give in Section
6. Finally, we point out that in the case of an equation, which involves the wave
operator and nonzero lower terms, Karatoprakliev [12] obtained a priori estimaies
for the smooth solutions of Problem P1 in Qo.
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2. Preliminaries

In this section we consider the wave equation (1.1) in a simply connected region

(2.1) L= {(Q,cp,t):(}<t<(1—5)/2,05cp<21r,5+t<g<1—t},

bounded by the disc o := {(g,,t) : t =0, < 1} and the characteristic surfaces
of (1.1)

T i={(gpt):0<p<2mpo=1-1},
Toe = {(0,0,t) : 0 < p < 2m, 0 =€ +1}.
We seek sufficient conditions for the existence and uniqueness of a generalized so-

lution of the equation (1.1) with f € C(.), which satisfies the following boundary
conditions:

%:2) Fa: “lzmanc = 0, [ +°‘(P)’“]|zonam =0;
(2.3) P ulzm =0, [w+a(p)ulg,nen, =0

where for the sake of simplicity, we set a(z) = a(|z|) = a(p) € C*([0,1]). The
problem PZ is the adjoint problem to Problem Py in Qs

Now, to obtain our results we define the notion of a generalized solution as
follows.

DEFINITION 2.1. A function u = u(g,¢,t) is called a generalized solution of
Problem Py in e, € > 0, if:

1) u € CHQe), ulg, noq, = 07 fu +a(el| g noq, =0

2) the identity

1
(24) f [urv: — ugve — — Ve — fulgdedpdt z__j pa(o)uv dedy
o ToNnaQ,

1.1

holds for all
v E VE = ‘[v = Cl (QE) . [Ut + a(g)v]lzo = O,UIEZG = 0}

The following proposition describes the properties of generalized solutions of
Problem P, in ..

LEMMA 2.1. Each generalized solution of Problem Py in g is also a generalized
solution of the same problem in Q. for € > 0.

In view of (L.7), the equality (2.4) holds for each function v € Vp with the
property v = 0 in Qo \ . To approximate an arbitrary function v; € V; by such
functions in W () we make the following steps:

Step 1. Setting vo(p, @, 1) = et=(@y, (g, ¢, 1), we get

Q”_2|
3t %o

Step 2. The function v2(g,y,t) could be approximated in W2(2) by some
functions, which satisfy (2.5) and are zero in a neighborhood of the circle

(2.5) =0, w|g, =0
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{o =¢&,t =0}. In fact, such functions are:

'U2m(91 o, t) = 'Ug(g, @, t)¢(m V (9 - 5)2 +12), m — oo,

where ¥ € C®(RY), ¥(s) = 0, for s < 1 and ¥(s) =1, for s > 2.
Step 3. Each function vy (@, ¢,t) could be approximated in W}(Q.) by some
functions, which satisfy (2.5), and are zero in a neighborhood of the cone

{e=t+ek
uk(0, @, t) = vom (0, 0, )Y((t — 2+ €)K), K — 0.
In the special, but main case, when
(2.6) flosont) = £D(0,t) cosmip + £ (e,1) sinngp
we ask the generalized solution to be of the form

(2.7) u(p, 0,1) = uld (o,1) cosng +ul) (o, ) sinng

1) (1) — £Q)
. u for f\Y) = f5

If troduce the function u®(p,t) =1 [ ’

we introduce the function u‘%)(p,1) u&f) - f-(1} - _ﬂ(t?)7

then, in view of (1.1), we conclude that
. 2
(28) B = 2 (qu), = o — ol = 1
in Ge = {(g,t) :t>0,e+t < p<1—t}, whichis bounded by the sets:

SO:{(Q:t):t=O1O<9<1}:

(29) S, ={(e,f):o=1—1}, Sne=1{(e):e=t+e}

Instead of the equation (2.8), consider the more general equation
(210) L = 2 (@u), — i) + dlp, u® = 1,
e

with the same boundary conditions. In this case, the two—dimensional problem
corresponding to Py is

L/u(l} e f(l) in Gg,
(2.11) Py '
u(1)151 = 03 [ugl) + a(g)u(n]ISo\(oxo) =40

and its generalized solution is defined by

DEFINITION 2.2. A function u®) = u{V (g, t) is called a generalized solution of
problem P, in Ge, € > 0, if:

1) uwe CHGe), lue + (@)l 5006, = O Usinoe. =0

2) the identity

(2.12) / [, — uPw, +d(e, £yuMy — fVo]pdodt = f oa(o)uDv do
Ge 50N9G,
holds for all

ve V) = {v € C1(Ge) : [vs +alp)l|g, = O], = O}
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By introducing a new function
(2.13) u® (g, ) = o*uM(e,1),

we transform (2.10) to the equation

2) _ . (2) Li.@_ 1

(2.14) u) —uy’ + [d(Qat) + 4—95] u® = gy,

with the string operator in the main part. Substituting the new coordinates
(2.15) E=1-p—-t,n=1—p+1, '

from (2.14) we derive

1 1
(216) gt [dPEn) +@-n-97|U= 5@ -1-0 &),
in D, = {(£,n) : 0 <& <71 <1—¢}, where

217 UEm =u@(pEn),tEn),  F&mn) =D& n),t&n).
Thus, we reduced the problem P, ; to the Darboux-Goursat problem for the more
general equation (2.10) with the same boundary conditions:
Py { Usn + c(&,mU = g(§,7) in De,

: U(0,n) =0, (Uy — Ug)(&,€) + (1 - )U(,€) = 0.
In view of the above observations, the wave equation (1.1) transforms finally to the
equation

(2.18)

1—4n?
42—-¢-n)?
which is of the form (2.16).

T — 1 e B3
(2.19) Uen + U= 4\/5(2 n—&)3F(,n),

3. The integral equation corresponding to Problem F, 2
Set

1 —4n? _. -
ele, 1) =~z € (Do \ (1,1)),
(51) o 0
g(&n) = 475(2 —e—n)iF(En).

Then the equation (2.19), in new therms, takes the form of the equation in (2.18).
Remark, that if f,(f) € C%Gop), i =1,2, theng € C(Dy), while ,:) € C*(Go),
i=1,2, then g € C*(Do\(1,1)).

In order to investigate the smoothness and the singularity of a solution of the
original 3 — D problem P, on g, we are seeking for a classical solution of the
corresponding 2 — D problem P, 2 not only in the domain D,, but also in the
domain

(3.2) DW= {(&,7m):0<E<n<1,0<f{<l—¢}, >0

Clearly, D. < D&.
Consider now the equation from (2.18), ie.

(3.3) Ue, + c(&;mU = g(&,m) in DY,
where c(£, 1) € C(D), g(¢,m) € C(DE), e > 0.
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Next, for any (£5,70) € Dil), we consider the sets

Hﬁ:ﬂfaﬂ)=U<§<50afu<ﬂ<ﬂo}= T=={(§,ﬂ)=0<§<ﬂa0<ﬂ<§o}

and we construct an equivalent integral equation to the problem Fa2, in such a
way that any solution of the problem Fpy,2 to be also a solution of the constructed
integral equation. For this reason, we consider the following integrals:

fo= [[ tote,m —elemUtE Ml nde = / N je Uen(€,17) dm €

€o
= L [Ue (€, 70) — Ue (€, E0)] d€ = U(Eqs mo) — U6 o)

and

n= [ lale,m) = e U ) nd = [o ’ ]E * Uenl€, m) dn e

£o €o
= L (e (€, &) — Ve (€, )] dE = U(Eor o) — [0 UL (€, ) de.
On the other side,

= ’ [ Vel dn = / * Uy dn.

Hence, we see that:

éo
of; = Ul(€e, £0) + jﬂ (U (£,€) — Ue(&, &) dé

£o
— Ulto, o) — fo ol — E)U(£,€) d&,

£o
[

Io + 2, = Ul€o, o) — fo (1 - O)U(E, £) de.

From the latest relation we obtain
fo 7o
U(€oy0) = f j [9(&,m) — cl€, W)U (& n)] dnd€
0 &o
Eo
(34) +2 / / "lg(&,m) — cl&. MU (€M) dE dn
0 0

Eo _
+ fo (1 — E)U(E, £) d€, for (€9,m0) € DY,

which is the desired integral equation.
Next, we set

(3.5) M, == suplg(£,m)|, cle) = suple(§,m), Mo :=sup|a(§)]
D pw [0,3]

and state the following
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THEOREM 3.1. Let c(§,n) € C’(DQ)), g(&,n) € G(Dgl)), € > 0. Then there
ezists a classical solution U(€,n) € C* (DM of the equation (3.3) which satisfies
the boundary conditions (2.18) with Ug,(§,7) € C(ﬁg)) and

U (€0sm0)| < EoMlc(e) + Ma] " exple(e) + Ma] in D,

(3.6) 1
Z‘%E{!UEL |Un|} & MgIC(E) + M)t explef(e) + 2M,).

Proof. In order to solve the integral equation (3.4), we use the following se-
quence of successive approximations U (») | defined by the formula

&o o
U+ (gg,mp) = fo f; lg(€,7) — (&, mU™ (&,m)] dn d&

o 7
(3.7) +2 [0 fo l9(£,7) — (&)U (&, m)] dE dn

&o
4 f ol - UM, €) d,
Q
U(O)(fo, 7?0) =0, in Di-

We will show that for any (§,7p) € D and n € N it holds

Myle(e) + Ma]"€5™
(n+1)! ’

(3.8) |(TO+D — U™) (&g, m0)] <

Indeed:

o Mo o [N
1) UD€ o) = ]0 f‘E ol€,n) dndt +2 fo jo g€, m) dé dn,

and hence

D (€5, m0)| < MylEo(m0 — &o) + €3] = Moo < Mo

2) Let, by the induction hypothesis (3.8),

U — U)o, 10)] < Llele) + Mal™ 65 i= An}

be satisfied. Then, it follows that
€0 7o
(@D —T™) (€0, m0)| = }_ fo /.5 o(&mU™ = UCV)(g,n) ddg

fo i £0
o (n) _gr(n-1) o (n) _gr(in—1)
2 [o fo (&, m) (U™ —UD)(€, m) dE dn+ fo (1-&) (U™ - )(5,£)d<s~

SAn[C(E)(/OED jﬁ E"dnd£+2f:n /:E“d&dn> +Maf“§"de]

B 1 . B _—-_2____ n+2 _& n+1
_An[c(s)(n+1fo+ (0 50)+(n+1)(n+2) 0 )+n+l 4 }
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- 1 o1, M ems2 Mo n+1]
__A”[C(E)(n+1€0 lo (n+l)(n+2)° )+n+1§°

e(&) i1, Mo pnt1 g nentl |
<A |88 gnt1 Ma - + M, — ,

So, the inequality (3.8) is proved and hence the uniform convergence of the sequence
{U™ (&, ) }men in D&Y is obvious. For the limit function U € C(l_)gl)) we obtain
the integral equality (3.4) and U(0,7,) = 0.

Also, in view of (3.8), we see that

n

S (@D - v®) (&, m0)

k=0

< & Myle(e) + M,) ! exple(e) + Ma),

(U (&, m0)| = k+1)!

n k
<o,y LML g4
k=0

and therefore
U (€0, m0)| < EoMylele) + M)~ exple(e) + Mal.
To estimate the first derivatives of the function U, by (3.7), we get:

(3.9) U (€0,m0) = (1 = £0)U™ (0:40)

50 o
+ /0 [9(¢, &) — c(&, &) U™ (£, &) dE + fE [9(€0,m) — (&0, U™ (&0, )] dn,
and

£o
(3.10) Uit (€, m0) = /0 [9(&,m0) — (€, 10)U™ (€,10)] &
Using (3.8) and (3.9) we see that

ED o
|UE(?(§0:TI0)§ = ‘./0 g(&,&y) d€ + ng ‘.‘_J(fo,”'?) dﬂ’

< My(&o+m0— &) = Mgy < My,

and

€0
O — U)o, mo) = l— /; e(&, &) (U™ — U™ (€, &o)] dE

- / " c(o, M)(U™ = UMDY (&, ) dnp+ a(1 — &) (U™ — TUTD)(€q, &)

€o

50 Ul
< %[C(E) + M, ? [C(E)(fo £ de + Lo £5 dmn) +Ma€3]

< Lotete) + Mol [0
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So, for the derivative U, (£o, 7o) We get the estimation:

(311) e, (é0sm0)l = lim U (€, m0)l = IZ(U“’“) U) (€0sm0)
k=0

< Mgkzzf:] [e(e) +]:!Mfa]k-1 [kcif:‘)l +Ma] < Mgle(e) + Ma]™ exp[c.(e) +2M,].

Using (3.8) and (3.10), we find
(UL — U (€oym0)| = |- f e(€,m0) (U™ = UD€, mo)] €]

< EWMa o) + ap? f £ dE < iy TElee) + Mg

Therefore, U € C* (DE}) and
(3.12) |Uno (€0, 70) < Eole(e) + Ma] " exple(e) + Mal.
Also, by (3.10), it follows that
f,:,‘;f,” (€0s70) = 9(£0>0) — (60, M0)U" ) (€0 70)-

Thus, the function U(&g, 7o) is a solution of (3.3) and Ugy € C(DY). Finally, using
(3.9) and (3.10), we see that

Yish [U(ﬂ+1) UE(:H) +o(l - EU)U(nH)](fm 7o)

n—oo

= o1~ &) lim (U = U™)(0,€0)] =0,

i.e. U(&g, o) satisfies boundary conditions (2.18). m

The next result is very important for the investigation of the singularity of a
generalized solution of problem Fo.

LEMMA 3.1. Let (¢, ), g(€,n) € C(DE) and
(3.13) gem) =0, c&n) <0 nDM;a()20 for0<{<L

Then for the solution U(£,n) of the problem (3.3), (2.18) (already found in Theorem
3.1) we have

(3.14) U, =0, Un&mn) 20, Usg(m) 20 inDP.
Proof. In view of (3.7), from (3.13) we have

€ [T I
U (€, m0) = ]0 fs o(€, ) dnd€ +2 [) [) o(€,n) d€ dn 2 0.
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Suppose that (U™ — U (n=1))(£p, 7mq) = O for some n € N. Then

€0 [T

U+ — UM)(£g,mp) = — fo ff c(€,n)(U™ — UD€, n) dnd§
& M

) A —[0 c(¢,m)(U™ —UT=1)(&,n) d§ dn

£o .
. / a1 — £) U™ — UPD)(,€) dE 2 0
0

and

(3.15) U(&o,m0) = Z(U("+1) — U™)(é0,m0) = 0.
n=0

Since U(&g, 7o) = 0 for any (£g,70) € D and

(3.16) Uso(fm ng) = o1 — &)U (%o £o)

fo To
+ [ 006 60) = o6 E)UTE )] f£ [9(€0m) — cl€os MU (o, m)] d,
o
(3.17) Uny(€or0) = [l m0) = &)U €700 6

we conclude that Ug, 2 0and Uy, 201n D,{;l). |
As an immediate consequence of Theorem 3.1, (3.16) and (3.17), we have the
following

TrporEM 3.2. Let o(&,n) € CH(D), g(&,m) € CH(DEY), @ & CX((0,1]),
where k > 1, > 0. Then there exists a classical solution U € C*+1(D)) of the
problem Py -

4. Existence and uniqueness theorems for 2 — D Problem P

Consider the problem

{ Lu® = L(puf?) - o +d(p, t)u® = fO in G,

4.1 Py I
() . u(l)lsl =0, [ugl) + a(p)u(l)nso =0.

2

Note that, the notion of the generalized solution of the problem P, i in the
domain G, , € € (0,1), has been defined by Definition 2.2.

TueOREM 4.1. If d(p,1), fM(0:t) € CY(Go \ (0,0)), then there ezists a gen-
eralized solution u) € C2(Go \ (0,0)) of problem Pa,1 in Go, which is a classical
solution of the problem Py, in any domain G, € € (0,1).

Proof. In view of (2.13) and (2.15), ie. u®(g,7) = 02 (p,t) and £ =
1— p—t,n=1—p+t, consider the function

Uemn)=? (e(&m)tE:m))-
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Then Problem P, ; (see (4.1)) becomes P, i.e.
1

(42)  Ug+g [d@Em+@-¢-n7|U= B @OV FE ),

For each ¢ € (0,1) Theorem 3.2 ensures the existence of a classical solution U(§, ) €
C2(D®) of the problem P,j. The inverse transformations lead to a function
u@(p,t) € C2(Go\ (0,0)), which is a classical solution of Problem P in G.. This
solution is also a generalized solution of the same problem in Gp, because each one
of test functions v € Vj is zero in Go\G. for some £ > 0 and, for the concrete v,
(1.8) coincides with (2.4).

The proof of the theorem is complete. =

THEOREM 4.2. For each fized € € (0,1) there exists at most one generalized
solution of the problem P, in G..

Proof. If u; and ug are two generalized solutions of Py 1, then for u() =y —usy
we see that
u® € CY(Ge), uV|g 6 =0, [P +a(r)uP]|g 5 =0
and the identity

(4.4) f uMv, — uv, + d(p, t)uVv] ededt — f pa(o)uMvdp =0
G. SpndG,

holds for all functions_'v = Ve(l) :
Let h(p,t) € C*(Go \ (0,0)). Set

s 9(&m) = 755 [2 — £ — /(2 — € — n)/2. (n - €)/2) € CH(DLY),
4.5

of€,m) = 1 [d(o(€, m), 1€, m) + 2 —n — )% e CHDLY),
and consider the boundary value problem o

(46) ‘/E'q + C(ET W)V = g(fa 77) in De,

(4.7) V|1 =0, Vo= Ve+o(l- V]|, —e =0

By using the substitutions §; =1 —e—1n, 7, =1 — € — ¢, and by setting
(4.8) V(l)(fb"h) =V(l-e—m,l-e-&),

the problem (4.6), (4.7) becomes

(49) 1ff(llf?'l 63 c(l) (61! 771)V(1} = 9(1) (511 Th) in DE:

(4.10) VO, =0, [P -V +ele+&)VI, _ =0
where

D (gy,m) = 7 [dP(E0m) + (6 +m +29)72] € CH(DL).

But (4.9), (4.10) is the Goursat-Darboux problem Py 2 in the domain D., for
which Theorem 3.2 holds. Consequently, there exists a classical solution V() (¢€,,7,) €
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C? of (4.9), (4.10). The inverse transformation leads to a classical solution V' =
V(&,n) of (4.6), (4.7) in D.. Similar arguments show that v(p,t) =
0~ 12V (£(0,1),m(p,t)) is a classical solution of the problem

(4.11) v = lg(gu,_,)g — vy +dv=h(g,t) in G,

(4.12) Ulsz,‘ = 0, [ws + cx(.t_a)'v]“‘_.,.o =0,

for fixed € € (0,1). ~
Multiplying (4.11) by a generalized solution u(*) € C*(G¢) and integrating by
parts, we find

(4.13) f [weu” — veug) + dvu® — huM]odedt — / oo(o)vu® do = 0.
Ge SoNBG:

Comparing (4.13) and (4.4), we see that

(4.14) [ h(o, t)u® (o,) pdgdt = 0.

€

But the function h(p,t) € C*(Go \ (0,0)) has been arbitrarily chosen. Thus (4.14)
gives u)(p,t) = 0 in G.. The proof is complete. B
5. Existence and uniqueness theorems for 3— D Problem F,

In this section we consider for the wave equation
(5.1) Clu = -1;(91&9)_,_, + Elguw —un = f(o.0,1),
subject to the following boundary value problem
(5.2) P,: Du=finQ., u|21nan, =0, ['LLE_-I-cx(g)u]‘Eaﬁaﬂe =
and prove the following results.

THEOREM 5.1. For 0 < ¢ < 1 there ezists at most one generalized solution of
Problem P, in Q..

Proof. Case 0 < e < 1. If uy,uz are two generalized solutions of Py in Q.
then for u® 1= u; — us € C*(£2) we know that

a 1 =0;
u(l) ISIr'Ian = 07 [ut ) + a(g)u( }]IZUHaﬂg - 0,

and the identity
1
(5.3) f [ugl)'vt - ugl)vp - ;Eug,l}vq,] pdpdydt = f po(pyuVv dpdep
Qe ZpNoL2,
holds for all v € V.. We will show that the Fourier expansion
- .
(5.4) uD(p,pt) = {uﬁl) (p, t) cosmep + ul® (p, 1) sin mp}
n=0

has zero Fourier—coefficients u% D(p,t) n Qe, i€ ) =0 in Q..
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Since u®) € C*(£2,), using
v1(p, ;1) = w(p,t) cosnp € Ve or va(p,¢,t) =w(p,t)sinny € Ve

in (5.3), we derive

; . 2 ; ;
(5.5) us;)wt —ullgy, — Ty pdpdt — pa(p)ulwdp =0
s e P P2 n n

< 8G.NSa

for all w € Ve(l),'n € N,i = 1,2. From Definition 2.2 it follows that the functions
ud (o,t) are generalized solutions of the homogeneous problem P, ; with d(p,t) =
n?p~2 € C*(Go\(0,0)). Clearly Theorem 4.2 gives u5” (¢,) =0 in Q. for n € N,
i=1,2 and thus ™) = u; —uy =0 in Q.

Case & = 0. In this case from Lemma 2.1 it follows that the generalized solution
u® e ¢ \ (0,0,0)) of Problem P, in § is also a generalized solution of the
homogeneous problem P, in (2, for each € € (0, 1). From Case 1 we know that
2 =0in Q. for each £ > 0 and thus u) = u; —u2 =0 in Qo. ]

THEOREM 5.2. Let the function f € C(f—lo) Fret (S—ig\(U,O, 0)) be of the form:

k
(5.6) f(l)(g, @,t) = Z {ff(tll)(g’ t) cosnep + f,(,m)(g, 1) sinmp} :

n=0

Then there ezists one and only one generalized solution

k
(5.7) uB(g,p,t) = {u&“)(e, t) cosn +ul? (g,1) sin mp}

n=0

of the problem P, in o, u® € C?(Q\ (0,.,0)) and it is a classical solution of the
problem P, in each domain Q., € (0,1). Moreover, for a fized n the corresponding
trigonometric polynomial u,, of degree n satisfies a priori estimates: for n=0:

(5.) uo(z1, z2,)llcra,y = Z|ai51 Sgplﬂ"uﬂ-
< 8exp(2Ma)e? exp(1/45%) 115 ooy
forn € N:
Hun(zle?at)Hcl(ﬁ,)
(5.9) 1/2 2
& n
< 8exp(2M,) —— exp ('E_g) (Hfﬁn) les (@) + 1782 “Co(én)) .
where Q. = QN {(p,t) : 0+t >}

Proof. It is enough to consider the case of a fixed number n. Let

(11) : F(p,8) = f(n)( )
5.10 v (p,t) =1 *» (o,%) in case o, 5 ()

Then by (5.7) and (5.10), the equation (5.1) becomes

1 n?
(5.11) S, ~ U = U = FO(e)
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As in Section 2, we make the substitutions

(5.12)

E=1-p-t,n=1—p+i,

and introduce the new function

(5.13)

U (g, n) = /2UM (o(€, ), tE, M)-

Then (5.11) reduces to (2.18), where

c(&n) = pTp ST

L4’ ¢ oD\ (1,1)),

B gen) = 5= -0 APE € CDNLD)

3 (e,m) = £ (e(€,m), (&, M),

and satisfies the Goursat-Darboux problem Py 2. Theorems 3.1 and 3.2 ensure the
existence of a classical solution U = U (¢, ) of this problem with the properties

(3.6).

Case n € N. In view of (3.5), (5.14), it is easy to see that

c(e)

M,

(5.15)

n2
S“P‘C(gzﬂ)l S 3
Dgn £

1 . 1 :
g ey/2502) < Lysaay on
‘SD‘ER|4\/§( n E) fn (E?’?)i =a ”fn ||C°(Gg)

where DSV = {(&,M0<E<n<l, 0<&<1—e}, €>0. Hence Theorems 3.1
and 3.2, on one hand, ensure the smoothness of the solution U® of Problem P, 2,

ie.

(5.16)

U’E?i) (E; n) = U(2) e Cz(Dgl))'}

on the other hand, they ensure the a priori estimates:

17 D¢

By

7 1 i 52 n
oD@ < S lonon e e (T

2
oE
2

2
2 i 1 i € n
sup{|U52 1, WS < 71557 lee @)z Xp(2Ma) exp (—2) ;

Also, by (5.12) and (5.13), we have

U (p,8) = o~ 2UL) (&, m) -

Since p > &/2 for (€,7) € DY by the inverse transformation:

; £3/2 2 )
0l < ert) S e () 18 lon
i il n :
618 el < eneM) e () 1o

1059 (o, )|

IA

c1/2 . b
2exp(2Ma) S o2 (55 ) 1Al -
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Therefore, in view of (5.7) and (5.18), we derive

“g“ ,?p(é‘: ©, );Ico(f},)
(5.19) £1/2

/
< exp(2M,, )—GXP( ) (”f(n)”cc(c;o) + |78 )”CG(GU))

Since un(gcose, psing,t) = u$) (o, ¢, ), obviously

el/2 .
e 2,01 < 30xp(200a) S o0 (T ) (I8P omc@or + 1582 horiem)

i=1,2. So, the estimate (5.9) holds in ..

Case n = 0. In this case, by (5.6) and (5.7), it follows that 0, 0,1) =
759 (0,1) and uo(w1,3s,t) = ud (e,¢:%) = ui (0,1). Problem Po,p in this case
becomes

U2 +ce, MU = gl&,m) , UPlemo =0, UP|p=e =0,
where

ofg,m) =22 -n—8]7" € C¥(Do\ {1,1})

and
(11)
C(S) = Sup ‘c(‘fa ﬂ)l = =— 4.62 ) MQ = 4”f0 ]|C°(Gg)
Arguments similar to the previous case lead to (5.8).0

The following theorem is an immediate consequence of Theorems 5.1 and 5.2

THEOREM 5.3. Let the function f € C*(S) be of-the form
(=]
(5.20) flovoit) = 3 {8 (p, ) cosmep + £ (p, 2) sinng}.
n=0

Suppose that the Fourier coefficients f(l) (p,t) and f,(,g) (p,t) satisfy
1 11
s 0= o0 (25 ) Sl

(5.21)
+Z eXP( ) (”f(n)”ca(ca) + 178 )lice(so)) <o00.

Then there erist one and only one generalized solution u € CY.) of the problem
P, in Q. and the a priori estimate

(5.22) lullorcg,) < 8exp(2Ma)| fllexs (o)

holds. If the series (5.20) is finite, then u € C%(€0 \ (0,0,0)) and it is a classical
solution of the problem Py, in Q€ € (0,1)
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REMARK 5.1. Condition (5.21) is valid for each € € (0,1) if there ezists a
function 1 with ¥(n) — oo as n — oo, such that

o

1
(523) 3 epn®p(m) (1A oo + I looen) < oo

n=1

REMARK 5.2. As we see, the norm (5.21) on the right-hand side of (5.22) tends
to infinity as € — 0. At this point, it is reasonable to remained that, according to
Theorem 6.1 (see, the discussion in Introduction) the estimate (5.22) is satisfied also
by the generalized solutions which have singularities at the point (0, 0,0). Therefore,
the left-hand side of (5.22) tends to infinity as p — 0. The above phenomenon is
subject to the new paper [9].

6. On the singularity of solutions of Problem F,
For the wave equation
1

T
we consider again the boundary value problem F,, i.e.

62) Py: Ou=fimQ, ulg =0 [u+a(ully =0.

and begin with the following interesting result of this section

(6.1) Che (Que)g =+ Elz'ucptp — Ut = f(gz 2 t)

THEOREM 6.1. Let afp) > 0, ¢ € [0,1}; a(e) € C([0,1]). Then for eachn €
N, n > 4, there erists a function f,(0,¢.t) € C’“‘2(90)_, for which the corresponding
general solution u, of the problem Py belongs to C™(20\(0,0,0)) and the estimate
1 = —n
(8.3) [un(pr,0)| 2 5lun(20,90,0)| + *lcosnp| 2 p"|cosne],  0<p<l,

holds. In the case a(p) =0 the upper estimate
—

2
6.4 Un )| <e¢ _1/2(————’—)—-—-—) cosngl, (o, t) € DY
(64)  [un(e0t)| < cup Gioe=D) | ¢l (e,2) € Dy
holds, where ¢, = const and
DY i={(p,t):0<p—t<p+t<plp—t)},p<25t -1

Thus, for a(g) = 0 we have two-sided estimates, which in special cases t = p and
t =0 are:

65)  p"|cosng| < [un(py o, 0),  |un(p,,0)| < Cop™"|cosmepl,

with Cy = const. That is, in the case of Problem P2 the ezact behavior of Un(T1,Z2,1)
around (0,0,0) is (z3 +z3)~"/2.

Proof. Note that, by Theorem 1.1, the functions
wn(o,0,t) = 0" (0® — 12)"Y2(a,, cosnep + bp sinng),n > 4,

are classical solutions of Problem P with a = 0,.where obviously w, € C™2(Qp).-
We consider the special case of Problem F, :

(6.6) Ou=p"(e* —t*>)" 2 cosnp  in Qo,

(6.7) u‘zl =1, [ue + ac(g)u]‘):c| =0.
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The Theorem 5.1 declares that the problem (6.6), (6.7) has at most one generalized
solution. On the other hand, from Theorem 5.2 we know that for this right-hand
side there exists a generalized solution in {2 of the form

un(p, p,t) = u;l) (0,t)cosmyp € Cﬂ-l(ﬁo\(os 0,0)),

which is classical solution in ., € € (0,1). By setting ule )(g, t) = g’i"ug,l)(g, t) and
substituting

(6.8) E=1—p—t, n=1l-p+%

the problem (6.6), (6.7), in view of

(6.9) Un(&:m) = w2 (28 m), ¢, m)),

becomes a Goursat—Darboux problem P, :

(6.10) Un,gn + (& mMUn = g(&,7),

(6.11) Ua(0,) =0,  [Uny—Ung+o(l=EUn]| _ =0

The coefficients
2

(6.12) () = g—g g € OO, n24,
619 sl =21 [LZ0ZD e o)

are defined by (3.1). It is obvious that in this case c(¢,n) < 0, g(£,7) > 0 in DV,
e € (0,1).

Thus, for a(£) > 0, in view of Theorem 3.1 and Lemma 3.1,we have the following
result.

Proposition 6.1. There ezists a classical solution U(€,7) € C™(Do \ (1,1))
for the problem (6.10), (6.11) for which

UEn) 20, Um0, Uyén)=0in DY
Let

(6.14) K=me@mma>u
3

From (6.10) for 0 < € < 1/2 it follows that

eiis fD o 9 (6 dndt = fD gy Uend(&,m) dn g
(6.15)
+f c(&,mU(E,ng(&,n)dndé = I + I,
D&y

where
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l—e 1
I =fﬂ [E (UEng)(E:ﬂ)dﬂd{

l=g
= [ el ot - Uele Ol ) - [ @& and
0 D:

By (6.13), it is obvious that g(£,1) =0- So,

(6.16)

Since

(6.17)

l—e
n=- [ U6 00e &~ [, Weon))dncs

fD QI)(UEQH)(E:"T)dEdﬂ——- fo - jo H(Ugg,,)(g,n)d{dn
1 1—e 1—e

+j;_ fﬂ (Usgn)(ém)dédn=/o (Ugn)(m,m) — (Ugy)(0,m)] dn
1

+ fl_ [(Ugn)(1 — &,m) — (Ugn) (0, m)] dn = ” Ugen(€,m) d€ dn

l—e 1
- [ womnan+ [ @ma-endn
0 l-¢

_/(L)(UQEW)(gsﬂ)dﬁdﬂa
De

(6.16) becomes

(6.18)

; P [D (6, ©)9(6,6) + U6, g0 (€. )] d

1
- [ v e -gnant [ ) dedn

An elementary calculation shows that

(6.19)

(6.20)

and

(6.21)

aelem =—(n— 22 [%‘%—1_—;1)] 2] <o

antem) = ~(n - Pt [ETE=

6e(6,6) = 9a(6,6) = (1 - 2m)(1 - E.
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From (6.18) and (6.15) it follows that

1—¢
0 <K £ Ity = /D Ue (6, €)9(6,€) + U (€, €)ax (€, 6)] d€

(6.22) 1

~[1_ Ul —&,m)gq(l —&m)dn+ D(I)U[gfn + cgl(&,m) d¢ dn.

Also, it is easy to check that

gen(&,m) + (€, mg(§,m) = 0.

Thus,

1—€
0<K<h+Ih=— f [Ue(&, £)9(6,€) + U (€, €6 (6, €)] de
(6.23) .

1

= f U(1 —&,m)gn(1 — &,n) dn,
1-—-¢

where, as it is easy to check,

(624 0:(6,8) = 3196 E)e-

The function U(£,7) is a classical solution of (6.10), (6.11) in D, € € (0,1) with

(6.25) Ue(6,6) = 2106 e + 50(1 - HUES)

If we substitute (6.24) and (6.25) into (6.23), we get

1 1—¢
K<h+h=-3 [ bEaUEkds

1 l1—e 1
3 [et-oueoseos- [ va-snmi-and
(6.26)

e (T lfl_sa(l-av(s £)g(€,€) de

- 2 g &, E) '2_ 2 1S )9S,

= U(l—e,m)gqy(1 —e,m)dn.

1-¢

According to Proposition 6.1 and the choice of right-hand side of (6.8), we have

U(E, 1) = 0,Un(€,7) = 0,a(£) > 0,(£,m) = 0,95(¢,m) < 0in DY,
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which together with (6.26) implies
1

K<h+IL<- U(1 —&,m)gn(1 —€,m)dn— %(gU)(l——s,l —e)

1-¢

1
= [ va-emig-enld-3@0-g1-9)

1—e

1
1
< Ul —e,1)|gy(1 —&,m)ldn— E(gU)(l —&l—¢)

- 1—e

= [U(l—s,l)—-;-U(l-e,l-—s)] gl—g1-¢),
because g(1 —¢,1) = 0. Since g(1 —¢,1—¢) = %E“‘“%, we see that

1
0<K< [U(l—a,l)—%U(l-—e,l—s)] Zs”"é.

For § =1—¢,n=1we have p =t =¢/2 and so
€ €

(6.27) 0 < 4Ker ™ < ul® (5 §) - %ug)(s, 0).

Finally, the inverse transformation gives

1 = x 1
ull (%, %) > 52&5‘1) (,0)+Cie" 2 Cie™™, 0<e< 3

with & = 2% K. Multiplying the function u, by C?, we see that (6.3) holds.

In order to obtain an upper estimate of the singular solution, we consider the
case afp) = 0. In this case (6.26) gives

2 1 !
L= [ denddn=—3000-e1-9) - [ Usmi-andn
Put

Ki= [, @Em din>0
DD

Then for 0 < § < & < 1 we have
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K. >L+1D

=—%(gU)(1—E,1-—E)+ ll_EU(l—e,n)]gn(l—s,n)ldn
%(gU)(l—s,1—£)+ I;U(l—E,I-E)Ign(lﬁs,n)wn
(6.28) > —%(gU)(l—a,l-sH l;U(l—E,l—é)lgn(l—'s,n)Idn

_>__

S5 —%(gU)(l e l—e)+ (V)1 —e1—8)

1
>U(l-g,1-9) [g(l—~s,1—6)— Eg(l——s,l—s)]
> A(gvv)(]' —& 1= 6)!
where the constant A > 0 is such that
(6.29) (1-Ng(l—51-8)>2g(1—¢1—¢)

Using the explicit formula (6.16) for the function g(§,7), we see that the last in-
equality is equivalent to

(6.30) (1-2) ( 4 )n*% > o—ntd
e+é - ’
which implies
a1
(6.31) 0<)\§1—%(£;§6) °
A necessary condition, for (6.31) to be satisfied is
(6.32) 1< % <o:h -1

Using (6.32), we can find an upper estimate for the generalized solution u, in this
concrete case. To do that we consider the domain

(6.33) D*={(tn):l-n<1-£Zul-n}
where 1 < p < 93751 — 1. Observe that

1 .
. 1f1-é+1-9\""% 1/14+p\""2

el e S o b T — ]
‘55{1 2( 21—-7) ) } 2( 2 Chape 0

For A = C,,, the inequalities (6.30) and (6.29) are satisfied and so, by (6.28), we see
that

2-§-1
1-81-m)
By (6.9) and (6.8), the inequality (6.34) transforms to

(6.34) U, n) < 27" K,Cp1 ( ) B A&7 EDF,

ne=g
(6.35) ud (o, 1) < 4K1C,* ((p - iﬂp =~ t)) ’
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which is satisfied for
(o,t)e DY :={0<p—t<p+t<pulp—1t)}.
Finally, (6.35) implies

-
6.36 ul(o,t) < 4K, C7 p~ 12 (——p——) for (o,t) € DY,
( ) (9 )— g P (p+t)(p—t) (9 ) 1

which coincides with the estimate (6.4)
Note that C, =1/2 on {t = 0} and so

(6.37) uM(p,0) < 8K1p™", 0<p<l,
which is the upper estimate in (6.5). The proof of theorem is complete. | |

‘We conclude this section with

THEOREM 6.2. Let a(g) > 0 for p € [0,1], a € C"2[0,1]. Then forn € N,
n > 4 there erists a function fni(ee,t) € C"%(Qo) (different from the function
of Theorem 6.1) such that for the corresponding to it generalized solution u, of the
problem P,

un(p, @, t) <] o (QO \ (Oa 0, O)),

(6.38) T un(py @, p) = un(20,,0) + p' ™| cosnp| > pt"| cos mup).
Proof. The functions
vn(p,0,t) = tp™(p° — 12)"3/2(a,, cos nep + by, sin o)
are classical solutions of Protter’s problem P1*. We consider the problem

(6.39) O = tp~™(p* — 12)" %2 cosnyp

(6.40) ulg, =0, [w +a(p)d]|g, =0.

According to Theorem 5.1, the problem (6.39), (6.40) has at most one generalized
solution. Simultaneously Theorem 5.2 for this right-hand side ensure the existence
of a generalized solution in g, which is of the form

un(0, 0, 1) = ulD(g,t) cosng € C*1(0\(0,0,0))

and is a classical solution in £, € € (0,1).
Using the substitutions u') (g,1) = g%ug)(g, t), (6.8) and (6.9), the problem
(6.39), (6.40) becomes a Goursat-Darboux problem

(6.41) Un,en + c(€;mUn = g(&:m),

(6.42) Un(0,) =0,  [Uny—Ung+a(l=8Ul|,_. =0,

where ¢(£,7) is defined by (6.12), while

643) g&m) =2"F(n-&@2-n—-F (1~ o e cm2(DY).

From (6.10) and (6.43) it follows that c(€,7) < 0, g(&,7) > 0 in D for £ € (0, 1).
Hence Theorem 3.1 and Lemma 3.1 imply
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Proposition 6.2. There ezists a classical solution U(§,n) € C™Y(Do\ (1,1))
for the problem (6.41), (6.42) for which

Ue,m =0, U (Em20, Ugdém=0 in DO

A elementary calculation shows that g(§,£) =0,

(6.4) 02(6,6) = —0e(6,6) = 31— 9" 20
(6.45) 9en(&,m) + (&, mg(€,m) = 0.
Since
_ 1 n=g3 n- %]
9q(&,m) = g(&,m) [n—& teTeot 1-7

and

1—-¢, 1 1 3

g,,(l - E,"I) = (1 — f}‘)q((eg _6(1771 n)g) [5 +n -ﬂ(ﬁ +ﬂ) + 5(5 - n)} )
for
_1 2n—3

Me =" E2n +1
we have
(6.46) g(l—emn) > Oforl—e<n<n,
(6.47) g(l—gm) < Oforn <n<l

To show (6.38), let
K, ——/_ g*(&,m) dédn > 0.
D;" -

Then
1
0<K25f Remdedn, 0<e<s.
D 2

Using arguments similar to that of Theorem 6.1, we arrive to (6.18). By (6.45), we
get
1

0<Ks< fDmgz(g,n)dgd =-—]1_EU(1—€,11)§=:(1—E,ﬂ)dﬂ-

l1—¢
- fo e (&, €)9(6,€) + U (€, )gn(£:6)] d€

Since g(£,£) = 0, the above inequality becomes

l—-¢

e
0< K, < — A U(&,£)gq(&,8) dE — fl_ Ul —&,1)gn(1 —&,m)dn

1
— | UQ—e,mga(1—e,m)dn.
1.
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Following the steps of the proof of Theorem 6.1 and using the Proposition 6.2, we
find

1 Ne
0<Kzsf Ul —&,n)lgy(1 —e&,m)ldn— 1 U(1 —€,1)lgn(1 —&,m)|dn
1 —

£

1 Tle
oS f U(l —& 1);91’1(1 - 53"7)' dﬂ - - U(l —i&yl— E)]gn(l - Eﬁ?)ld’?

= [U(l -& 1) - U(l — gl = 5)] g(l -& ne)'
By (6.43), it follows that
gl—-e&n) < En_%

and so
0< Ky <[U(L—g,1)—U(Q—¢1—e)]e 1
Finally, using (6.9), it follows that
0<K; < [u&f) (—Z-, -;-) —uld (e, 0)] et
ie.
ul® (0, 0) > u(20,0) + Kag' ™" 2 Koo' ™" Kz = 217K,
and so the estimate (6.38) holds. The proof of Theorem 6.2 is complete.l

REMARK 6.1. In [2], Theorem 2, Aldashev considers the following type prob-
lems:

Find a solution of the homogeneous wave equation Ou = 0 in o, satisfying the
nonhomogeneous boundary conditions:
PIJ: |z, = To() , g, =01(2) or
P2: wlz,=wo(z) , ulg,=01(2)

Under certain conditions, imposed on the functions 7o, &1, %0, he asserts that
both Problems P1'and P2’ are solvable in the class C () N C? ().

Comparing these conclusion with Theorems 6.1, 6.2 and the results presented
in [21], it is not difficult to see the appearing contradiction. Indeed, applying the
Duhamel’s formula to the nonhomogeous wave equation (6.6) in §p with homoge-
neous Cauchy initial dates on Xg, we find the solution of this problem in o),
expressed by explicit formulas (see, [23], pp- 226-234). Therefore, the problem
(6.6), (6.7) transforms to the problem P2’ with v(z) =0 and oy € C*"}(Zp). But
the last problem cannot be solved in C(€), because, by Theorem 6.1, for & =0
the unique generalized solution of Problem F,, has a power-type singularity of the
form p~" (see, (6.3)) at the point (0,0,0).
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